Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Am Soc Nephrol ; 31(9): 2225-2226, 2020 09.
Article in English | MEDLINE | ID: covidwho-1383790
2.
JCI Insight ; 6(17)2021 09 08.
Article in English | MEDLINE | ID: covidwho-1413722

ABSTRACT

Neutrophil-mediated activation and injury of the endothelium play roles in the pathogenesis of diverse disease states ranging from autoimmunity to cancer to COVID-19. Neutralization of cationic proteins (such as neutrophil extracellular trap-derived [NET-derived] histones) with polyanionic compounds has been suggested as a potential strategy for protecting the endothelium from such insults. Here, we report that the US Food and Drug Administration-approved polyanionic agent defibrotide (a pleiotropic mixture of oligonucleotides) directly engages histones and thereby blocks their pathological effects on endothelium. In vitro, defibrotide counteracted endothelial cell activation and pyroptosis-mediated cell death, whether triggered by purified NETs or recombinant histone H4. In vivo, defibrotide stabilized the endothelium and protected against histone-accelerated inferior vena cava thrombosis in mice. Mechanistically, defibrotide demonstrated direct and tight binding to histone H4 as detected by both electrophoretic mobility shift assay and surface plasmon resonance. Taken together, these data provide insights into the potential role of polyanionic compounds in protecting the endothelium from thromboinflammation with potential implications for myriad NET- and histone-accelerated disease states.


Subject(s)
Fibrinolytic Agents/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Polydeoxyribonucleotides/pharmacology , Thrombosis/drug therapy , Animals , Extracellular Traps/drug effects , Extracellular Traps/metabolism , Fibrinolytic Agents/therapeutic use , Histones/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Polydeoxyribonucleotides/therapeutic use , Pyroptosis
3.
J Am Soc Nephrol ; 31(8): 1683-1687, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-186288

ABSTRACT

BACKGROUND: A significant fraction of patients with coronavirus disease 2019 (COVID-19) display abnormalities in renal function. Retrospective studies of patients hospitalized with COVID-19 in Wuhan, China, report an incidence of 3%-7% progressing to ARF, a marker of poor prognosis. The cause of the renal failure in COVID-19 is unknown, but one hypothesized mechanism is direct renal infection by the causative virus, SARS-CoV-2. METHODS: We performed an autopsy on a single patient who died of COVID-19 after open repair of an aortic dissection, complicated by hypoxic respiratory failure and oliguric renal failure. We used light and electron microscopy to examine renal tissue for evidence of SARS-CoV-2 within renal cells. RESULTS: Light microscopy of proximal tubules showed geographic isometric vacuolization, corresponding to a focus of tubules with abundant intracellular viral arrays. Individual viruses averaged 76 µm in diameter and had an envelope studded with crown-like, electron-dense spikes. Vacuoles contained double-membrane vesicles suggestive of partially assembled virus. CONCLUSIONS: The presence of viral particles in the renal tubular epithelium that were morphologically identical to SARS-CoV-2, and with viral arrays and other features of virus assembly, provide evidence of a productive direct infection of the kidney by SARS-CoV-2. This finding offers confirmatory evidence that direct renal infection occurs in the setting of AKI in COVID-19. However, the frequency and clinical significance of direct infection in COVID-19 is unclear. Tubular isometric vacuolization observed with light microscopy, which correlates with double-membrane vesicles containing vacuoles observed with electronic microscopy, may be a useful histologic marker for active SARS-CoV-2 infection in kidney biopsy or autopsy specimens.


Subject(s)
Acute Kidney Injury/complications , Coronavirus Infections/complications , Kidney Tubules/virology , Pneumonia, Viral/complications , Acute Kidney Injury/mortality , Aortic Dissection/surgery , Autopsy , Betacoronavirus , COVID-19 , Coronavirus Infections/mortality , Epithelial Cells/pathology , Humans , Kidney Tubules/pathology , Kidney Tubules/ultrastructure , Male , Middle Aged , Nephritis/physiopathology , Pandemics , Pneumonia, Viral/mortality , Prognosis , Respiratory Insufficiency , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL